6,774 research outputs found

    Magnetostrictive behaviour of thin superconducting disks

    Full text link
    Flux-pinning-induced stress and strain distributions in a thin disk superconductor in a perpendicular magnetic field is analyzed. We calculate the body forces, solve the magneto-elastic problem and derive formulas for all stress and strain components, including the magnetostriction ΔR/R\Delta R/R. The flux and current density profiles in the disk are assumed to follow the Bean model. During a cycle of the applied field the maximum tensile stress is found to occur approximately midway between the maximum field and the remanent state. An effective relationship between this overall maximum stress and the peak field is found.Comment: 8 pages, 6 figures, submitted to Supercond. Sci. Technol., Proceed. of MEM03 in Kyot

    Oscillatory regimes of the thermomagnetic instability in superconducting films

    Full text link
    The stability of superconducting films with respect to oscillatory precursor modes for thermomag- netic avalanches is investigated theoretically. The results for the onset threshold show that previous treatments of non-oscillatory modes have predicted much higher thresholds. Thus, in film supercon- ductors, oscillatory modes are far more likely to cause thermomagnetic breakdown. This explains the experimental fact that flux avalanches in film superconductors can occur even at very small ramping rates of the applied magnetic field. Closed expressions for the threshold magnetic field and temperature, as well oscillation frequency, are derived for different regimes of the oscillatory thermomagnetic instability.Comment: 5 pages, 5 figure

    Dendritic flux avalanches in rectangular superconducting films -- numerical simulations

    Full text link
    Dendritic flux avalanches is a frequently encountered instability in the vortex matter of type II superconducting films at low temperatures. Previously, linear stability analysis has shown that such avalanches should be nucleated where the flux penetration is deepest. To check this prediction we do numerical simulations on a superconducting rectangle. We find that at low substrate temperature the first avalanches appear exactly in the middle of the long edges, in agreement with the predictions. At higher substrate temperature, where there are no clear predictions from the theory, we find that the location of the first avalanche is decided by fluctuations due to the randomly distributed disorder.Comment: 3 pages, 2 figure

    Dendritic flux patterns in MgB2 films

    Full text link
    Magneto-opitcal studies of a c-oriented epitaxial MgB2 film with critical current density 10^7 A/cm^2 demonstrate a breakdown of the critical state at temperatures below 10 K [cond-mat/0104113]. Instead of conventional uniform and gradual flux penetration in an applied magnetic field, we observe an abrupt invasion of complex dendritic structures. When the applied field subsequently decreases, similar dendritic structures of the return flux penetrate the film. The static and dynamic properties of the dendrites are discussed.Comment: Accepted to Supercond. Sci. Techno
    • …
    corecore